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1. Introduction

Integrability has been providing us with new insights into the duality between the N = 4

super Yang-Mills theory and the superstring theory in AdS5 × S5. After the discovery of

integrability in the one-loop super Yang-Mills theory [1, 2] and in the classical superstring

theory [3], a lot of progress has been made toward the all-order/quantum integrability in

the full theory of the planar AdS/CFT correspondence. As a monumental result, there

has emerged a novel integrable model [4, 5] which is expected to describe the spectrum

of the infinitely long Yang-Mills operators as well as that of the infinitely long quantum

strings [6 – 8], at arbitrary values of the ’t Hooft coupling constant λ.

The integrable model is characterized by the dispersion relation [9] and the S-matrix [5,

10, 11] of the fundamental particles. The system exhibits the centrally extended psu(2|2)⊕
psu(2|2) symmetry. Remarkably, the symmetry completely determines the dispersion re-

lation and also the S-matrix up to an overall scalar factor [5]. Given the scalar factor as

a function of the momenta and the coupling, one can systematically study the spectrum

of the system by making use of powerful techniques developed for conventional integrable

models, such as the Bethe ansatz.

The determination of the scalar factor, or equivalently its principal part called the

dressing phase, was one of the main outstanding problems in this field. The entire ex-

pression of the dressing phase as the strong coupling expansion was first constructed [12]
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so that it satisfies the crossing symmetry [13] and includes the previously known first two

terms [14 – 17] which reproduce the semi-classical string spectrum. Subsequently, a sys-

tematic way of its determination as the weak coupling expansion was presented [18]: The

problem can be rephrased in terms of the cusp anomalous dimension [19] where the tran-

scendentality principle [20], with some empirical rules, fully determines the dressing phase

up to an overall multiplicative constant. The constant is readily singled out by comparison

with either the perturbative computation [21] or the strong coupling result [12]. Ultimately

the weak coupling result is identified with the strong coupling one by a sort of analytic

continuation [18, 22] and is nicely expressed in a closed integral formula. We call it the

BHL/BES dressing phase after the authors of the articles [12, 18]. Its properties, such

as the pole structure [23] as well as the strong coupling limit [24 – 27], have been further

studied.

Despite the success in the determination, the clear understanding of the scalar factor

was still lacking. The above procedures do not explain why the scalar factor should exhibit

its particular structure. It is also unsatisfactory that these procedures require some model-

specific computation of the string/gauge theory. Although there are some interesting results

explaining part of its structure [23, 28 – 30], one would desire a comprehensive explanation.

Let us recall here that in the field of integrable models, there are two well-known

approaches for the computation of the S-matrices: One is called the factorized bootstrap

program or the phenomenological computation [31], the other is called the direct calcula-

tion, the microscopic derivation or the Bethe ansatz technique [32 – 34].

The former approach is to compute the S-matrices as an inverse problem. In two-

dimensional massive relativistic integrable models, two-body S-matrices of the fundamental

particles satisfy the unitarity, the factorizability, and the crossing symmetry. These condi-

tions constrain the form of the S-matrices up to the CDD ambiguity. The ambiguity can be

removed by some additional requirements, such as the absence of the poles corresponding

to unphysical particles.

The latter approach is to compute the S-matrices as a direct problem. For example, in

the anti-ferromagnetic Heisenberg spin-chain the physical vacuum is the anti-ferromagnetic

state rather than the ferromagnetic state. The anti-ferromagnetic state is realized as a

nontrivial solution of the bare Bethe ansatz equations built over the ferromagnetic reference

state. In other words, the physical vacuum is constructed by filling up the Dirac sea over

the bare vacuum. The R-matrix describes the scattering of the magnons, which are the

fundamental excitations over the bare vacuum. On the other hand, the S-matrix appears

as the scattering matrix of the spinons, which are the fundamental excitations over the

physical vacuum.1

The above mentioned determination [12] of the scalar factor of the AdS/CFT S-matrix

basically followed the former bootstrap program. It is natural to expect that one could

1The R-matrix (the scattering matrix of magnons) is proportional to the S-matrix and has a trivial

scalar factor. It also satisfies the unitarity, the factorizability, but does not satisfy the crossing symmetry.

In the latter approach one does not assume the crossing symmetry anywhere. Instead, the S-matrix, which

describes the physical scattering, becomes crossing-symmetric automatically, even though one starts from

the crossing-non-invariant R-matrix.
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determine the scalar factor alternatively by the latter direct computation. The idea of such

nontrivial structure of the physical vacuum in the context of the AdS/CFT correspondence

has been sometimes considered [35]. A concrete hint was observed in a computation of

all-order anomalous dimensions [36]. The authors of [36] derived the integral equation

describing the all-order anomalous dimensions of field strength operators and found that

there appear integral kernels very similar to those describing the scalar factor. Such kernels

are generated by the elimination of density functions of Bethe roots at nested levels. In

our previous article [37], we demonstrated that a certain configuration of the Bethe roots

at nested levels indeed generates the dressing phase in the all-order Bethe equations.2

In this article, we investigate in detail this microscopic formulation of the AdS/CFT

S-matrix. After a brief review of the S-matrix and the all-order Bethe equations in sec-

tion 2, we present in section 3 the whole configuration of the Bethe roots describing the

physical vacuum. The configuration consists of a long Bethe string stretched along the

imaginary axis and stacks distributed along the real axis. The former part corresponds to

the configuration of a pulsating string, while the latter is analogous to the vacuum configu-

ration of the Hubbard model in the attractive case. We determine the density distribution

of the stacks. In section 4, we subsequently compute the density of stacks in the presence

of fundamental excitations. Using this, we directly compute the S-matrix as the two-body

scattering matrix of the fundamental excitations over the physical vacuum, to find precisely

the BHL/BES dressing phase [12, 18]. Section 5 is devoted to a discussion. The derivation

of the effective momentum phase of stacks is presented in appendix A.

2. S-matrix and nested Bethe ansatz equations

Let us start our discussion with an introduction of some notations. The S-matrix is most

concisely expressed with the help of the following parametrizations

x±(u) = x(u ± i

2
), x(u) =

u

2

(

1 +
√

1 − 4g2/u2
)

. (2.1)

Here u is an analogue of the rapidity parameter and

g =

√
λ

4π
(2.2)

is the normalized coupling constant. In terms of these parameters, the momentum p of a

fundamental particle is expressed as

eip =
x+

x− . (2.3)

The scattering matrix appearing in the context of the AdS/CFT correspondence ex-

hibits the following tensor product structure

Ŝ(pk, pj) = S0(pk, pj)
2[R̂(pk, pj) ⊗ R̂(pk, pj)], (2.4)

2After the submission of our previous article [37], there appeared a similar computation in the revised

version of [36]. While the mechanism of the generation of the dressing phase is essentially the same, their

formulation looks conceptually different from ours. For instance, there appear Bethe roots at the nested

levels twice as many kinds as ours.
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where R̂(pk, pj) is the su(2|2) invariant R-matrix of size 16×16 and S0(pk, pj)
2 is the overall

scalar factor. The form of the R-matrix is completely determined by the symmetry [5, 10].

There are some variations of the canonical form of the R-matrix, depending on the choice

of the basis. Here we adopt the string theory basis [11] so that the R-matrix satisfies the

ordinary Yang-Baxter algebra.

The overall scalar factor is conventionally expressed as

S0(pk, pj)
2 =

x−
k − x+

j

x+
k − x−

j

1 − g2/x+
k x−

j

1 − g2/x−
k x+

j

e2iθ(uk ,uj), (2.5)

where 2θ(uk, uj) is called the dressing phase [14]. If we regard the S-matrix (2.4) as the

scattering matrix of physical particles, the dressing phase turns out to be a nontrivial

function. Its form was recently determined [12, 18]. Let us call it BHL/BES dressing

phase. It is expressed as

2θphys(uk, uj) = 2ig2

∫ ∞

−∞
dteituke−

|t|
2

∫ ∞

−∞
dt′eit′uje−

|t′|
2

(

K̂d(2gt, 2gt′) − K̂d(2gt′, 2gt)
)

,

(2.6)

where the Fourier transform is a skew combination of the dressing kernel

K̂d(t, t′) = 8g2

∫ ∞

0
dt′′K̂1(t, 2gt′′)

t′′

et′′ − 1
K̂0(2gt′′, t′) . (2.7)

The constituent kernels are given by

K̂0(t, t
′) =

tJ1(t)J0(t
′) − t′J0(t)J1(t

′)

t2 − t′2
, K̂1(t, t

′) =
t′J1(t)J0(t

′) − tJ0(t)J1(t
′)

t2 − t′2
, (2.8)

where Jn(t) are Bessel functions of the first kind.

The goal of the present article is to derive this BHL/BES dressing phase in the context

of the underlying bare integrable model. In other words, we describe the system starting

from a bare vacuum where the scattering matrix of the fundamental excitations has the

same structure as (2.4)–(2.5) but with the trivial dressing phase

2θbare(uk, uj) = 0. (2.9)

In the bare description, the physical S-matrix can be computed as the scattering matrix of

the fundamental excitations over the Fermi surface.

Given the form of the S-matrix, one can derive a set of Bethe ansatz equations. Let

us consider the system of N particles in a periodic one-dimensional box of length L. We

impose integrability of the system, namely the condition that any multi-body scattering

is factorized into a product of two-body scatterings described by the above S-matrix. For

simplicity we consider the case of zero total momentum

P =

N
∑

j=1

pj = 0. (2.10)
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The consistency conditions for the periodicity give rise to the Yang equations

eipkL =

N
∏

j 6=k

Ŝ(pk, pj). (2.11)

These matrix equations are diagonalized with the help of the nested Bethe ansatz. Com-

bined with the momentum condition (2.10), the nested Bethe ansatz equations can be

expressed as the asymptotic all-order Bethe ansatz equations [4]

1 =

K4
∏

j=1

x+
4,j

x−
4,j

, (2.12)

1 =

K2
∏

j=1

u1,k − u2,j + i/2

u1,k − u2,j − i/2

K4
∏

j=1

1 − g2/x1,k x+
4,j

1 − g2/x1,k x−
4,j

, (2.13)

1 =

K2
∏

j 6=k

u2,k − u2,j − i

u2,k − u2,j + i

K3
∏

j=1

u2,k − u3,j + i/2

u2,k − u3,j − i/2

K1
∏

j=1

u2,k − u1,j + i/2

u2,k − u1,j − i/2
, (2.14)

1 =

K2
∏

j=1

u3,k − u2,j + i/2

u3,k − u2,j − i/2

K4
∏

j=1

x3,k − x+
4,j

x3,k − x−
4,j

, (2.15)

(

x+
4,k

x−
4,k

)J

=

K4
∏

j 6=k

u4,k − u4,j + i

u4,k − u4,j − i
e2iθ(u4,k ,u4,j)

K1
∏

j=1

1 − g2/x−
4,k x1,j

1 − g2/x+
4,k x1,j

K3
∏

j=1

x−
4,k − x3,j

x+
4,k − x3,j

×

×
K7
∏

j=1

1 − g2/x−
4,k x7,j

1 − g2/x+
4,k x7,j

K5
∏

j=1

x−
4,k − x5,j

x+
4,k − x5,j

, (2.16)

1 =

K6
∏

j=1

u5,k − u6,j + i/2

u5,k − u6,j − i/2

K4
∏

j=1

x5,k − x+
4,j

x5,k − x−
4,j

, (2.17)

1 =

K6
∏

j 6=k

u6,k − u6,j − i

u6,k − u6,j + i

K5
∏

j=1

u6,k − u5,j + i/2

u6,k − u5,j − i/2

K7
∏

j=1

u6,k − u7,j + i/2

u6,k − u7,j − i/2
, (2.18)

1 =

K6
∏

j=1

u7,k − u6,j + i/2

u7,k − u6,j − i/2

K4
∏

j=1

1 − g2/x7,k x+
4,j

1 − g2/x7,k x−
4,j

. (2.19)

The length L and the number of particle N are interpreted as

L = J − K4 +
1

2
(−K1 + K3 + K5 − K7), N = K4. (2.20)

We refer to [5, 10, 38, 39] for the details of the derivation.

3. Bethe root configuration of the physical vacuum

In the bare description, physical states are characterized by solutions of the bare Bethe

ansatz equations, that is, the simultaneous equation (2.12)–(2.19) with the trivial dress-

ing phase (2.9). In this section we present a particular solution that should express the

nontrivial physical vacuum state.
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3.1 General structure

The configuration consists of the following occupation numbers of bare Bethe roots3

(K1, . . . ,K7) = (2M,M, 0, 2M, 0,M, 2M). (3.1)

For the vacuum state the configuration of Bethe roots must be symmetric with respect to

the interchange of the two su(2|2) sectors: distribution of roots u1,k, u2,k, u3,k is just the

same as that of u7,k, u6,k, u5,k, respectively. Regarding this symmetry, we mostly omit to

mention the former copy of roots hereafter.

The vacuum has to be neutral with respect to the pair of su(2|2) symmetries. This

restricts the relative numbers of the Bethe roots to be K4 = K5 + K7 = 2K6. It can be

understood as follows: We restrict ourselves on one of the su(2|2)’s. Let [n1;n2] denote

the two su(2) charges, by which we mean the Dynkin indices with respect to the bosonic

subalgebra su(2) ⊕ su(2) ⊂ su(2|2). A bosonic root u4 creates a magnon with charges

[1; 0]. Either of fermionic roots u5 or u7 converts the magnon charges [1; 0] to [0; 1]. A

bosonic root u6 flips the latter su(2) spin down, namely it converts [0; 1] to [0;−1]. Either

u5 or u7 converts [0;−1] to [−1; 0]. In other words, u5 and u7 have charges [−1; 1] while

u6 has charges [0;−2]. It then follows that a state with general excitations has charges

[K4 − K5 − K7;K5 + K7 − 2K6].

The distribution among K5 and K7 is not determined by the neutralness of the vacuum,

since the Bethe roots u5 and u7 originate in the same nested level of diagonalization [5]

and thus carry the same su(2|2) charges. In fact, the Bethe roots x7,k are introduced by

the relabeling x7 = g2/x5 [4] in order to recover the seven sets of equations (2.13)–(2.19)

out of five [5, 38].

Distinction of the roots u5 and u7 arises in connection with the su(2, 2|4) one-loop

Bethe equations. For a general value of u, the value of x(u) has an ambiguity of the square

root branch (2.1). The branch of x5 and x7 are chosen so that x5, x7 approach u5, u7,

respectively, in the one-loop limit g → 0. In other words, we relabel x5 and x7 through

the relation x7 = g2/x5 so that all x5’s and x7’s satisfy |x5| > g, |x7| > g. The vacuum

configuration has no x5 root, hence all the roots at the nested levels decouple from u4’s

in the one-loop limit. The set of occupation numbers (3.1) are not allowed for the one-

loop Bethe equations. The vacuum configuration is characteristic of the all-order Bethe

equations.

When we derive the dressing phase, we send both J and M to infinity. However, for

the purpose of studying the vacuum configuration, it is convenient to take the limit J → ∞
first while keeping M sufficiently large but finite. We postpone taking the limit M → ∞
until we discuss excited states in the next section.

In what follows we will specify the whole configuration of the bare Bethe roots.

3The occupation numbers (3.1) satisfy the condition K2 ≤ K1 + K3 ≤ K4 ≥ K5 + K7 ≥ K6 required for

the all-order Bethe ansatz equations. (This condition follows from the consistency of nested Bethe ansatz.

See, e.g. [38].) On the other hand, they are outside the bound K1 ≤ K2 ≤ K3 ≤ K4 ≥ K5 ≥ K6 ≥ K7

required for the one-loop Bethe ansatz equations. This means that the vacuum configuration is characteristic

of all-order Bethe ansatz equations and becomes singular in the one-loop limit.
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3.2 Configuration of the central Bethe roots

In our previous article [37], we discussed mostly the configuration of Bethe roots other

than the u4 roots, which is the most essential part of the derivation of the dressing phase.

Here, we further specify the precise configuration of the u4 roots of the vacuum state.

The configuration of u4’s is extremely simple when we see it on the u-plane. For

J → ∞, it is given by

u4,k = k̃i (3.2)

in terms of a shifted index k̃ = k − M − 1
2 , which runs over

k̃ = −M +
1

2
,−M +

3

2
, . . . ,M − 3

2
,M − 1

2
. (3.3)

This configuration looks like nothing but a conventional Bethe string of length 2M . In the

present case, however, it is not enough to specify only the values of u4,k’s because for each

x4,k there is a choice of two branches of the square root (2.1). We choose them in such a

way that Im x+
4,k > 0, Im x−

4,k < 0 for all roots. In other words, the vacuum configuration

is completely specified on the x-plane. Explicitly, it is given by

x±
4,k =

i

2



k̃ ± 1

2
±

√

(

k̃ ± 1

2

)2

+ 4g2



 . (3.4)

Note that the distribution (3.2) on the u-plane is common to the magnon bound state [40].

For that state, however, the choice of branches is x+
4,k = x−

4,k+1 for k = 1, . . . , 2M − 1 and

Im x−
4,1 < 0, Im x+

4,2M > 0, which is different from (3.4).

Several comments are in order. First, it is very natural that the configuration is simple

and, in particular, does not have any continuous modulus parameter. There is only one

discrete parameter, the number of u4 roots 2M , which will be eventually sent to infinity.

Second, the vacuum configuration (3.2) for large M is transparent when scattered

with extra u4 roots. More precisely, when one scatters an extra root u4 with the vacuum

configuration (3.2), it gains a scattering phase against each constituent u4,k. However,

there occurs cancellation and thus the total scattering phase is

2M
∏

j=1

u4 − u4,j + i

u4 − u4,j − i
=

u4 + (M + 1
2 )i

u4 − (M + 1
2 )i

u4 + (M − 1
2 )i

u4 − (M − 1
2 )i

, (3.5)

which becomes trivial in the large M limit. This property is common to the magnon bound

states and is crucial later in the computation of the dressing phase where we in fact add

extra u4 roots to the vacuum. On the other hand, in contrast to the case of the magnon

bound state, there occurs no cancellation in the parts where x4,k’s appear explicitly in

the Bethe equations. This is necessary for having a sufficient number of stack solutions;

otherwise such a cancellation in (2.19) decreases the number of solutions of u7,k satisfying

|x7,k| > g less than 2M .

Third, the vacuum solution is characteristic of the all-order Bethe ansatz equations:

If we take the one-loop limit g → 0, the configuration (3.4) becomes singular, which is in

– 7 –
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accord with the fact that the dressing phase vanishes in this limit. This is again in contrast

to the magnon bound state, which survives for g → 0 with each pair of x±
4,k approaching

u4,k ± i/2.

Some readers might wonder whether the above Bethe string with the present branch

choice really exists, though it solves the Bethe equations in the limit J → ∞, and how to

understand such a singular behavior in the one-loop limit. To answer this question, it would

be instructive to consider the configuration temporarily in the physical Bethe equations,

where we can make use of the correspondence with classical strings. The deviation due

to the presence of the dressing phase is within the error of the string hypothesis and

is negligible for J → ∞. Let us consider the thermodynamic limit J → ∞, keeping

g,M proportional to J , and introduce a rescaled spectral parameter x̃ = x/g. On the

x̃-plane the imaginary roots (3.4) form two condensates [−ib,−ib−1], [ib−1, ib] with b =

M/2g +
√

(M/2g)2 + 1. Because the configuration is symmetric under the interchange

x̃ ↔ 1/x̃, the corresponding classical string lives in the S2 × R sector [41]. There are few

candidates for the solution in the S2 ×R sector with only one modulus b. We identify it as

a pulsating string [44, 43, 42] (see also [45, 46]). Pulsating string is an elliptic solution and

has a continuous elliptic modulus k and a discrete winding number. The winding number

is read from the density of the imaginary Bethe roots on the u-plane, which is 1 in this

case. Given the winding number, the elliptic modulus k is determined by b. When we send

M to infinity, b also goes to infinity and k approaches 0.4 Thus the configuration (3.4)

with large M corresponds to the rational limit of the pulsating string. It sweeps the S2 at

almost constant speed with high frequency.

An unusual feature of this configuration is that the condensates run across the unit

circle on the x̃-plane. Such a solution is precisely an exception to the general correspondence

between classical strings and solutions of the one-loop Bethe equations [42, 47, 48].

Pulsating string solution has zero angular momentum in the S2. This is akin to the

neutralness of the anti-ferromagnetic state in a spin-chain.

3.3 Formation of stacks

In our vacuum configuration, the Bethe roots u6 and u7 form stacks [37]

u7,2k−1 = u6,k +
i

2
, u7,2k = u6,k − i

2
, for k = 1, . . . ,M. (3.6)

Without knowing the bare Hamiltonian, one cannot verify that this configuration really

corresponds to the ground state. However, most likely it does, by analogy with the Hubbard

model. The Bethe equations (2.18)–(2.19) resemble very much the Lieb-Wu equations

for the one-dimensional Hubbard model. The vacuum of the Hubbard model was well

studied [49, 50]. In the attractive case, the vacuum consists of precisely this kind of

stacks [50], namely a kind of k–Λ strings [51]. Note that this kind of stack also appears in

the description of the field strength operators Tr FL [36].

4Although one can take k arbitrarily small, it cannot be strictly zero as far as the winding number is

nonzero. The strictly rational case k = 0 corresponds to zero winding number, which looks no longer a

pulsating string but rather a point-like string.
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Multiplying Bethe equations for u7,2k−1 and for u7,2k together, one obtains the following

set of Bethe equations

1 =

2M
∏

j=1

1 − g2/x+
6,k x+

4,j

1 − g2/x+
6,k x−

4,j

1 − g2/x−
6,k x+

4,j

1 − g2/x−
6,k x−

4,j

M
∏

j 6=k

u6,k − u6,j + i

u6,k − u6,j − i
. (3.7)

They can be viewed as effective Bethe equations for u6,k denoting the centers of stacks.

3.4 Distribution of stacks

Given the configuration of x±
4,k, (3.7) can be viewed as Bethe equations for a single kind of

Bethe roots with a regular form of self-interaction:

eiΦ(u6,k) =

M
∏

j 6=k

u6,k − u6,j + i

u6,k − u6,j − i
, (3.8)

where

Φ(u6,k) =
1

i

2M
∑

j=1

ln
1 − g2/x+

6,k x−
4,j

1 − g2/x+
6,k x+

4,j

1 − g2/x−
6,k x−

4,j

1 − g2/x−
6,k x+

4,j

(3.9)

is regarded as the virtual momentum phase. For sufficiently large M , one can evaluate this

phase function by approximating sum by integral. We relegate the detail of calculation to

appendix A. If we take M and u sufficiently large compared to the coupling constant g,

the phase function approaches a reasonably simple form

Φ(u) = 2M

[

2 arctan
u

M
+

u

M
ln

(

1 +
M2

u2

)]

. (3.10)

An important property of the function Φ(u) is that it is a monotonically increasing function.

This is clear from the form of its derivative

Φ′(u) = 2 ln

(

1 +
M2

u2

)

. (3.11)

The Bethe equations (3.8) are thus analogous to those of the one-dimensional Bose gas

with repulsive δ-function interaction or those of the sl(2, R) spin-chain.

The Bethe equations (3.8) can be written in the logarithmic form

2πnk = Φ(uk) + 2
M
∑

j 6=k

arctan(uk − uj). (3.12)

We often abbreviate u6,k as uk hereafter. The mode number nk associated with the root

uk takes integer/half-integer value, depending on M is odd/even, respectively. Since the

r.h.s. is monotonically increasing as a function of uk, it follows that nk > nj for uk > uj .

For the vacuum configuration, we consider consecutive set of mode numbers. One can

always relabel the uk roots so that uk > uj for k > j. The mode numbers for the vacuum

configuration are then given by

nk = −M − 1

2
,−M − 3

2
, . . . ,

M − 3

2
,
M − 1

2
for k = 1, . . . ,M. (3.13)
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In contrast to the case of the anti-ferromagnetic vacuum of the Heisenberg chain, the

present configuration does not correspond to the maximal filling over the real axis. In

other words, the support of the distribution of uk’s is a finite interval. One can see this as

follows: If the real axis were occupied by u1, . . . , uM , an extra real root with mode number

(M +1)/2 would have to sit at u = ∞ [33]. However, for uk = ∞ the r.h.s. of (3.12) would

take (3M − 1)π and thus uj < ∞ for 2πnj < (3M − 1)π, which is contradictory to the last

argument.

We are interested in the distribution of uk’s in the large M limit. From the form of

the potential (3.10), we see that the characteristic length of the distribution of uk’s is of

order M . Regarding this, let us expand the summand of the interaction term in (3.12) as

arctan(uk − uj) =
π

2
sign(uk − uj) −

1

uk − uj
+ O

(

1

(uk − uj)3

)

(3.14)

and evaluate the summation term by term. One finds that the sum of the first term

precisely gives rise to the mode number

1

2

M
∑

j 6=k

sign(uk − uj) = nk, (3.15)

while the sum of the lower order terms after the second one becomes negligible. The Bethe

equations (3.12) then reduce to

Φ(uk) = 2
M
∑

j 6=k

1

uk − uj
. (3.16)

In the continuous limit, one can replace the sum by the principal-value integral and obtains

Φ(u) = 2−
∫ B

−B

ρ(v)dv

u − v
, (3.17)

where we introduce the density function as

ρ(u) =

M
∑

j=1

δ(u − uj). (3.18)

As we mentioned above the density has a finite support, which is denoted by [−B,B].

The integral equation (3.17) can be solved by the inverse Hilbert transformation

ρ(u) =
1

2π2
−
∫ B

−B

√

B2 − u2

B2 − v2

Φ(v)dv

v − u
. (3.19)

The endpoints ±B are determined by the normalization condition

∫ B

−B
ρ(u)du = M. (3.20)

By evaluating these integral expressions, one obtains the distribution of the stacks.
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For our later purpose, let us estimate the order of B with respect to M . It is convenient

to rewrite the above equations in terms of the rescaled variables

u = Mũ, B = MB̃. (3.21)

We also introduce the normalized functions

Φ̃(ũ) = 2

[

2 arctan ũ + ũ ln

(

1 +
1

ũ2

)]

, (3.22)

ρ̃(ũ) =
1

M2

M
∑

j=1

δ(ũ − ũj), (3.23)

which are related to the original functions by

Φ(u) = MΦ̃(ũ), ρ(u) = Mρ̃(ũ). (3.24)

In terms of these rescaled quantities, the integral equation (3.17) gives rise to

Φ̃(ũ) = 2−
∫ B̃

−B̃

ρ̃(ṽ)dṽ

ũ − ṽ
. (3.25)

This equation is formally the same as (3.17), thus the solution is given by (3.19) with all

quantities replaced by the rescaled ones. Note that M -dependence now enters only through

the endpoint value B̃, which is determined by the normalization condition

∫ B̃

−B̃
ρ̃(ũ)dũ =

1

M
. (3.26)

It is clear that B̃ becomes small as one sends M large. This means that for large M , ρ̃(ũ)

is determined by the form of Φ̃(ũ) only at small ũ. Except for the very vicinity of the

origin, Φ̃(ũ) at small ũ roughly behaves as a linear function

Φ̃(ũ) ∼ 4ũ ln
1

B̃0

, (3.27)

where B̃0 ∼ B̃ is a typical scale. With this approximation one can analytically solve the

integral equation and obtains

ρ̃(ũ) ∼ 2

π

(

ln
1

B̃0

)

√

B̃2 − ũ2. (3.28)

The normalization condition (3.26) now reads

B̃2 ln
1

B̃0

∼ 1

M
. (3.29)

Ignoring the correction coming from the logarithm, one finds that B̃ roughly scales with

M−1/2. Thus the original B roughly scales with M1/2.
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4. Excited states and computation of the scattering phase

In this section we consider excited states and compute the two-body S-matrix of fundamen-

tal excitations. By making use of the underlying symmetry, the S-matrix can be written

most generally in the form of the spectral decomposition. As the symmetry fixes the form

of the projectors, it is enough to determine the eigenvalues in front of the projectors. For

example, the su(2) Zamolodchikovs’ S-matrix is constructed by computing the scattering

phases with respect to the triplet and the singlet. In the present case, the centrally ex-

tended su(2|2) algebra possesses a peculiar feature that the tensor product of a pair of

4-dimensional atypical representations is irreducible [10]. Therefore it is enough to com-

pute only one scattering phase of a pair of fundamental excitations in a representative

state.5 This allows us to restrict our consideration of excited states to those with only u4

roots added.

4.1 Fundamental excitations

Let us consider excited states by adding extra u4 roots to the vacuum configuration. We

let w4,k denote the extra roots and N4 be their total number. The occupation numbers

read

(K1, . . . ,K7) = (2M,M, 0, 2M + N4, 0,M, 2M). (4.1)

We keep the structure of the other roots unchanged, namely the other 2M u4’s constitute

the Bethe string with the branch choice (3.4), and the u6’s and the u7’s form M stacks

with consecutive mode numbers. In this subsection let us determine the deviation of the

density of stacks for fixed w4’s.

The effective Bethe equations for the centers of stacks read

2πnk = Φex(uk) + 2

M
∑

j 6=k

arctan(uk − uj), (4.2)

with mode numbers (3.13). The only difference from (3.12) is the momentum phase

Φex(u) = Φ(u) + ϕ(u), (4.3)

where the modification part is given by

ϕ(u6,k) =
1

i

N4
∑

j=1

ln
1 − g2/x+

6,k y−4,j

1 − g2/x+
6,k y+

4,j

1 − g2/x−
6,k y−4,j

1 − g2/x−
6,k y+

4,j

(4.4)

with y±4,j = x±(w4,j). By taking the derivative with respect to uk, (4.2) gives rise to

2πρex(u) = Φ′
ex(u) + 2

∫ Bex

−Bex

ρex(v)dv

(u − v)2 + 1
, (4.5)

5The computation presumes that the physical vacuum is a singlet. In the last section we constructed

the vacuum as a neutral state under the pair of su(2|2) symmetries. For the centrally extended algebra,

however, the state has to be neutral with respect to the central charges as well. We define the action of

the central charges in our bare integrable model so that the physical vacuum has zero central charges, by

shifting one of the central charges of the reference vacuum.
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where ρex(u) is the density function of the centers of stacks under the modified momentum

phase. Apparently, one could derive the same integral equation for the vacuum density ρ(u)

with the vacuum phase Φ(u). Subtracting it from (4.5), one obtains an integral equation

for the density deviation σ(u) = ρex(u) − ρ(u), as follows

2πσ(u) = ϕ′(u) + 2

∫ B

−B

σ(v)dv

(u − v)2 + 1
+ 2

(
∫ −B

−Bex

+

∫ Bex

B

)

ρex(v)dv

(u − v)2 + 1
. (4.6)

We consider the large M limit keeping the other parameters w4,k, N4 fixed. In this

case the second integral is negligible: The fluctuation of the overall shape of Φ(u) should

be suppressed at most within the change of M to M + ∆M with ∆M = O(1). Then the

deviation of B ∼ M1/2 is at most ∆B ∼ (M + ∆M)1/2 − M1/2 ∼ M−1/2∆M . On the

other hand, we saw in the last section that ρ(u) ∼ ln(M/B0)
√

B2 − u2. Then the second

integral is suppressed by ln(M/B0)B
1/2(∆B)3/2 ∼ M−1/2 ln M , which vanishes when M is

sent to infinity. After all, in the limit M → ∞ we obtain

2πσ(u) = ϕ′(u) + 2

∫ ∞

−∞

σ(v)dv

(u − v)2 + 1
. (4.7)

This integral equation is solved in the Fourier space [19, 36]. Using the techniques in

the appendix D of [19], one can derive the following formulas6

ln
(

1 − g2/x±(u)x±(u′)
)

= 2g2

∫ ∞

0
dte±iute−t/2

∫ ∞

0
dt′e±iu′t′e−t′/2Ĥm(2gt, 2gt′), (4.8)

ln
(

1 − g2/x±(u)x∓(u′)
)

= −2g2

∫ ∞

0
dte±iute−t/2

∫ ∞

0
dt′e∓iu′t′e−t′/2K̂m(2gt, 2gt′), (4.9)

where the integral kernels are expressed in terms of Bessel functions Jn(t) by

Ĥm(t, t′) =
J1(t)J0(t

′) + J0(t)J1(t
′)

t + t′
, K̂m(t, t′) =

J1(t)J0(t
′) − J0(t)J1(t

′)

t − t′
. (4.10)

With these formulas, one immediately obtains the solution in the Fourier space

σ(u) =
1

2π

∫ ∞

−∞
dteituσ̂(t), (4.11)

where

σ̂(±t) = − g2t

sinh t
2

N4
∑

j=1

∫ ∞

0
dt′e−t′/2

(

e±it′w4,jĤm(2gt, 2gt′) + e∓it′w4,jK̂m(2gt, 2gt′)
)

,

(4.12)

for t > 0.

6We assume u, u′ ∈ R. The branch of logarithm should be chosen appropriately.
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4.2 The dressing phase

We are now in a position to compute the dressing phase. The vacuum configuration in the

bare description corresponds to the empty state in the physical description. The physical

fundamental excitations are described by adding extra roots w4,k in the bare description.

The bare configuration we studied in the last subsection corresponds to the system of N4

excitations.

In the physical description, the scattering phase of the two fundamental excitations is

simply given by

φ12 =
1

i
ln

w4,1 − w4,2 + i

w4,1 − w4,2 − i
+ 2θphys(w4,1, w4,2). (4.13)

In the bare description, the same scattering phase is expressed by the difference of two

phases

φ12 = δ12(w4,1) − δ1(w4,1). (4.14)

Here δ12 is the total phase which the first excitation gains when moving around the chain

in the presence of the second excitation. δ1 is measured in the same way but in the absence

of the second excitation [32].

The total phase is the phase of the transfer matrix eigenvalue and thus can be read

from the r.h.s. of the central Bethe equations (2.16). By substituting (3.6) (and the corre-

sponding relations for u1,k, u2,k), they read

(

y+
4,k

y−4,k

)J

=

N4
∏

j 6=k

w4,k − w4,j + i

w4,k − w4,j − i

2M
∏

j=1

w4,k − u4,j + i

w4,k − u4,j − i
×

×
M
∏

j=1

1 − g2/y−4,k x+
2,j

1 − g2/y+
4,k x+

2,j

M
∏

j=1

1 − g2/y−4,k x−
2,j

1 − g2/y+
4,k x−

2,j

×

×
M
∏

j=1

1 − g2/y−4,k x+
6,j

1 − g2/y+
4,k x+

6,j

M
∏

j=1

1 − g2/y−4,k x−
6,j

1 − g2/y+
4,k x−

6,j

. (4.15)

The total phase is then expressed as

δ1...N4
(w4,k) =

1

i

N4
∑

j 6=k

ln
w4,k − w4,j + i

w4,k − w4,j − i
+

1

i

2M
∑

j=1

ln
w4,k − u4,j + i

w4,k − u4,j − i
+

+
2

i

∫ ∞

−∞
ln

[

1 − g2/y−4,1 x+(u)

1 − g2/y+
4,1 x+(u)

1 − g2/y−4,1 x−(u)

1 − g2/y+
4,1 x−(u)

]

ρex(u)du. (4.16)

Therefore (4.14) gives rise to

φ12 =
1

i
ln

w4,1 − w4,2 + i

w4,1 − w4,2 − i
+

+
2

i

∫ ∞

−∞
ln

[

1 − g2/y−4,1 x+(u)

1 − g2/y+
4,1 x+(u)

1 − g2/y−4,1 x−(u)

1 − g2/y+
4,1 x−(u)

]

(

σ12(u) − σ1(u)
)

du, (4.17)
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where σ12(u), σ1(u) are given by (4.11)–(4.12) with N4 = 2, 1, respectively. The first term

is the bare scattering phase which the first excitation directly feels against the second one.

The second term comes from the scattering of the first excitation against the stacks whose

density deviation σ12 −σ1 encodes the back reaction from the second excitation. From the

comparison with (4.13), we see that the second term plays precisely the role of the dressing

phase. By using the formulas (4.8)–(4.9) again, the second term can be expressed concisely

in the Fourier space

2θphys(w4,1, w4,2) = 2g2

∫ ∞

−∞
dteitw4,1e−

|t|
2

∫ ∞

−∞
dt′eit′w4,2e−

|t′|
2

(

K̂(2gt, 2gt′)−K̂(2gt′, 2gt)
)

,

(4.18)

where

K̂(2gt, 2gt′) = 4g2

∫ ∞

0
dt′′K̂m(2gt, 2gt′′)

it′′

et′′ − 1
Ĥm(2gt′′, 2gt′) . (4.19)

This precisely agrees with the BHL/BES dressing phase (2.6).

5. Discussion

We have computed the two-body scattering phase of the fundamental excitations over the

physical vacuum, which precisely agrees with the BHL/BES dressing phase. By taking

account of the centrally extended psu(2|2) ⊕ psu(2|2) symmetry, this suffices to determine

the whole 256×256 components of the S-matrix. From this S-matrix, one can construct the

Yang equations and derive the complete set of physical Bethe ansatz equations, as explained

in section 2. Altogether, our formulation proposes a derivation of the asymptotic all-order

Bethe ansatz equations with the BHL/BES dressing phase, purely based on the symmetry

and the integrability.

In the last section we have considered particular excited states that consist of only

N4 excitations. For these states the correspondence between the bare description and the

physical one may be trivial in the sense that each extra bare root represents a physical root.

However, the correspondence is not so simple in general: When the occupation numbers

of the physical roots are still equal to that of the extra bare roots, the values of the roots

could differ. In general, addition of extra Bethe roots at nested levels partly breaks the

structure of the stacks. A single physical root sometimes corresponds to a complex of bare

roots and holes. It would be interesting to clarify the correspondence.

For the moment we do not know whether a Yang-Mills operator of finite length can be

directly realized in the bare description. A possibility is that a physical operator of length

Lex could be expressed by a state in the chain of length L+Lex while the vacuum is defined

in the chain of length L. Of course both L and L+ Lex have to be sent to infinity, but still

the difference would make sense.

We have determined our vacuum configuration as the simplest consistent solution that

generates the BHL/BES dressing phase. However, ultimately we wish to derive it as

the ground state of a certain Hamiltonian. The Hamiltonian has to be expressed in a

form compatible with the bare description, preferably in terms of the su(2|2) R-matrix.

It may be derived from the gauge-fixed light-cone Hamiltonian for the Green-Schwarz
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superstring theory in AdS5 × S5 [6], which exhibits the invariance under the centrally

extended psu(2|2) ⊕ psu(2|2) symmetry when the worldsheet is decompactified [7].

Our microscopic formulation will be of fundamental use in various directions under the

latest investigation, for example, the boundary S-matrix [52], the wrapping interactions [53,

54] and the Baxter equations [55, 56]. We hope to report the progress in these topics

elsewhere.
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A. Effective momentum phase

The centers of stacks u6,k obey the following effective Bethe equations

eiΦ(u6,k) =

M
∏

j 6=k

u6,k − u6,j + i

u6,k − u6,j − i
, (A.1)

where

Φ(u6,k) = Φ+(u6,k) + Φ−(u6,k), (A.2)

Φ±(u6,k) =
1

i

2M
∑

j=1

ln
1 − g2/x±

6,k x−
4,j

1 − g2/x±
6,k x+

4,j

. (A.3)

Note that

g2/x±
4,j =

i

2



̃ ± 1

2
∓

√

(

̃ ± 1

2

)2

+ 4g2



 , (A.4)

where the index ̃ is defined as

̃ = j − M − 1

2

= −M +
1

2
,−M +

3

2
, . . . ,M − 3

2
,M − 1

2
. (A.5)

Let us evaluate the function Φ+(u) in the large M limit:

Φ+(u) =
1

i

2M
∑

j=1

ln
1 − g2/x−

4,j x+(u)

1 − g2/x+
4,j x+(u)
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=
1

i

M−1/2
∑

̃=−M+1/2

ln

√

(̃ − 1
2 )2 + 4g2 + (̃ − 1

2 ) + 2ix+(u)
√

(̃ + 1
2 )2 + 4g2 − (̃ + 1

2 ) − 2ix+(u)

=
1

i

M−1/2
∑

̃=−M+1/2

ln

√

t2̃ + a2 − t̃ + b
√

t2̃ + a2 − t̃ − b
, (A.6)

where

t̃ =
̃ + 1

2

M
, a =

2g

M
, b =

2ix+(u)

M
. (A.7)

In the large M limit, one can approximate the sum in (A.6) by the integral

Φ+(u) =
M

i

∫ 1

−1
dt ln

√
t2 + a2 − t + b√
t2 + a2 − t − b

. (A.8)

This integral can be performed by the change of variable s =
√

t2 + a2 − t. In fact,

∫ 1

−1
dt ln(

√

t2 + a2 − t + b) =

=

∫

√
1+a2−1

√
1+a2+1

ds

(

−s2 + a2

2s2

)

ln(s + b)

=
1

2

[(

a2

s
− s

)

ln(s + b) − b ln(s + b) +
a2

b
ln

(

1 +
b

s

)

+ s + b

]s=
√

1+a2−1

s=
√

1+a2+1

. (A.9)

Using this, one obtains

Φ+(u) =
M

2

[

2i ln
(λ + i

√
1 + a2)2 + 1

(λ − i
√

1 + a2)2 + 1
+

+ λ ln
λ2 + (

√
1 + a2 + 1)2

λ2 + (
√

1 + a2 − 1)2
− a2

λ
ln

a4/λ2 + (
√

1 + a2 + 1)2

a4/λ2 + (
√

1 + a2 − 1)2

]

, (A.10)

where

λ = −ib =
2x+(u)

M
, a =

2g

M
. (A.11)

Φ−(u) takes the same form with λ = 2x−(u)/M .

Let us consider the case where the coupling constant g is finite. As we take M and u

sufficiently large, we see that

λ ≈ 2u

M
, a ≈ 0. (A.12)

As a result, the phase function reduces to a reasonably simple form

Φ(u) = 2M

[

2 arctan
u

M
+

u

M
ln

(

1 +
M2

u2

)]

− 2πM. (A.13)

In the above computation we implicitly chose the branch of logarithm so that Φ(u) = 0 at

u = +∞. In the main text we drop the constant −2πM , which corresponds to the choice

of the branch where Φ(u) = 0 at u = 0.
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